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ABSTRACT

The main characteristics and the potential advantages of

generalized drift flux models are recalled. In particular it is

stressed that the issue on the propagation properties and on the

mathematical nature (hyperbolic or not) of the model and the

problem of closure are easier to tackle than in two-fluid models.

The problem of identifying the differential void-drift closure law

inherent to generalized drift flux models is then addressed. Such

a void-drift closure, based on wave properties, is proposed for

bubbly flows. It involves a drift relaxation time which is of the

order of 0.25 s.

It is observed that, although wave properties provide essential

closure validity tests, they do not represent an easily usable

source of quantitative information on the closure laws.



I. INTRODUCTION

Generalized drift flux models were recently shown (Bour4, 1988b)

to be attractive alternatives for current I-D two. fluid models.

Drift flux models are characterized by the uses of a single

momentum balance (the mixture balance instead of two phasic

balances) and of a void-drift closure law. In classical drift flux

models the void, drift closure law is expressed through an

algebraic equation, which amounts to ignoring nonequilibrium drift

effects. In generalized drift flux models, the void-drift closure

equation is a partial differential equation.

Generalized drift flux models and two-fluid models are compared in

the next section and in table i. The comparison brings out the

drawbacks of two-fluid models. However, both kinds of model must

be complemented by closure laws. In particular, generalized drift

flux models need a void, drift closure law which remains to be

specified.

Since generalized drift flux models were introduced to account for

the properties of kinematic waves (Bourn, 1988a), it seems

logical to use these properties to identify (i.e. to evaluate the

coefficients of) the void-drift closure equation. The purpose of

the present paper is to discuss the identification problem,

assuming that the void-drift closure equation may be approached by

a quasi linear differential equation of the first order.

II. A REMINDER ON GENERALIZED DRIFT FLUX MODELS AND TWO-FLUID

MODELS

The comparison between generalized drift flux models and two-fluid

models is summarized in table i which, like must of the substance

of this section, is taken from Bour_ (1988b). The mass and energy

balances are parts of both kinds of models, and they are not

discussed further hereafter. It is only noted for completeness

that they require a few closure equations, in particular for the

mass and energy transfers at the walls and at the interfaces.



The momentumbalances contain the two phasic averaged pressures PG

and PL' the subscripts G and L corresponding to the two phases.

For the following discussion, it is convenient to express PGand
PL in terms of the average pressure P and the pressure difference

PLG' with :

P _ _ PG + (I - _) PL ' PLG - PG - PL (2.1)

being the void fraction. Now, in the set of balance equations,

the two phasic momentum balances are equivalent to a subset of two

equations, namely the mixture momentum balance and the pressure

difference equation, obtained on eliminating P between the two

phasic balances.

The mixture momentum balance may be written :

OR O_r

+ bz + 8z + MLG (wG WL ) I_ + Fw + Pg - 0

(2.2)

the terms of the second line representing respectively :

a term accounting for fluctuation and transverse distribution

effects

a term accounting for longitudinal stress variations

an interfacial mass transfer term

a surface tension term (interfacial)

- a friction term (walls)

- a gravity term.

t and z are respectively the time and the space variables, OG and

@t are the phase densities, W G and W t are the phase average

velocities, g is the gravity acceleration, and :

p _ o_ PG + (I - o_) PL (2.3)



w being the local instantaneous velocity along Oz and Y the local

instantaneous deviatoric stress tensor, indicating the

conditional time or ensemble averaging operator and < > the

space averaging operator, and D being the unit vector of the Oz
Z

axis, R and T are defined as •

G L

R _ <_ or,(wG - %)2 + (1- =) _, (wL _ WL)2> (2.4)

=- _ + (l-u) r
-G -L _nz> • _nz (2.5)

Independently of the mass transfer, already present in the mass

balances, eq. 2.2 requires four closure laws for R, T, I_ and Fw.

Turbulence effects are present through R.

The pressure difference equation may be written :

[ (_ WG _ WG 1 _ WL _ WL I _ PLG

+ I_ + L_ + MLG [(I - _) (W G - WGI ) + _ (W L - WLI) ] (2.6)

+ L I + LFW + LFI - O_ (1 - (Z) PG L g - 0

the terms of the second and third lines representing respectively •

a term accounting for fluctuation and transverse distribution

effects

a term accounting for longitudinal stress variations

an interfacial mass transfer term (WG; and WL] are interfacial

averages of the phasic velocities)

an induced inertia ("added mass") term

two friction terms (respectively wall and interfaces)

- a gravity term, with

QGL _ PL - PG (2.7)

The above terms are defined in Bour_ (1988b). For instance :
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a G a L
(2.8)

L_ _ - (l-<x) _z _ 9:G" nz n_z + C_ _z (i-o_) T:L" nz n_z (2.9)

Equation (2.6) requires seven closure laws for I_, L_, WGI,

WLI , Ll , LFW , LFI. Moreover, retaining eq. (2.6) implies, at least

in theory, retaining also the interfacial momentum balance, which

requires one supplementary closure law.

In two-fluid models, eqs (2.2) and (2.6) are both implicitly

written. A crucial point is that eq. (2.6) is stiff. This means

that, due to the relative orders of magnitude of its terms, small

variations on the closure laws (and in particular on the induced

inertia and interfacial friction closure laws) induce large

variations on PLG (when PLG is not merely ignored) and/or W G-

Hence the difficulty to adjust the very badly known closure laws

of eq. (2.6) to avoid unrealistic values of the light phase

velocity.

A second crucial point is that, whenever eq. (2.6) is closed by

algebraic laws only, a non-hyperbolic set results : two

characteristic velocities are complex conjugate, with the

consequence that the model is unconditionally unstable.

In drift flux models, eq. (2.6) is not written, which is

acceptable since the value of PLG does not really matter in

practice. The two foregoing difficulties are not encountered.

Besides the closure laws already mentioned, current two-fluid

models are closed through an assumption on PiG (the set of

6 phasic balance equations involves 7 dependent variables, namely

two pressures, two velocities, two enthalpies and the void

fraction). Such an assumption imposes an artificial constraint on

the pressures and pressure gradients. It disturbs the description

of the corresponding propagation phenomena.



Generalized drift flux models are closed through the direct

description of the void-drift dynamic dependency. Assuming a

quasi-linear, partial differential relationship of the first

order, and using the convenient variables :

W _ _ W G + (i - _) WL, & -_ _ (I - _) (W G - WL) = _ (W s - W) (2.10)

(center of volume velocity and drift), it may be approached by :

+ wz + (w + w4 - Z) S--i+(ww4 - H) a--_

86 86 I
-- --= -- (f - 6) (2.11)

+ 8t + W4 8z 8

Equation (2.11) requires seven closure laws, i.e. the same number

as eq. (2.6) but with simpler physical significances and more

straightforward consequences : f is the fully-developed drift

value, 8 a relaxation time, Z and _ are respectively the sum and

product of the two characteristic velocities corresponding to the

kinematic waves, _ expresses inertia effects, W 2 and W4 are

averaged velocities close to W.

It can be concluded that developing a closure set for eq. (2.11)

and using generalized drift flux models appear as less hazardous

and hopefully easier than developing a closure set for eq. (2.6)

and using current two-fluid models.

llI. INFLUENCE OF THE VOID-DRIFT CLOSURE ON THE PROPERTIES OF

KINEMATIC WAVES ("Direct problem")

As long as the kinematic wave velocities are small with respect to

the sonic velocity, the properties of small harmonic kinematic

waves of the form



x - x0 ei ([ot - kz) (3.1)

where x0 (constant) [o and k are real or complex quantities, result
from the approximate dispersion equation (Bourn, 1988b)

(0 - Cc_k + i O ([o2 _ Y- [ok + ]'[k 2) = 0 (3.2)

where •

= W + _, = (3.3)

A first consequence is that the kinematic wave properties, which

do not significantly depend on _, W2, W4, cannot be used to

evaluate these quantities (_ is related to the sonic velocity, W 2

and W 4 have only weak influences).

In the exploitable experiments (Tournaire, 1987, Bourn, 1988a) [o

is imposed and the kinematic wave velocities V and their spatial

amplification coefficients k i result from the data processing.

Eqs. (3.1) and (3.2) must therefore be used with [o real and :

k ---qk r + i k i (3.4)

from which

- - k i z i (0)t - krZ)
x - x 0 e e (3.5)

[o
V =- (3.6)

k r

kr, which does not depend on the frame of reference, can be used

instead of _, which does, to characterize a wave.

Introducing eqs. (3.4) and (3.6) in the dispersion equation (3.2)

and separating the real and imaginary parts lead to •



k r [V - Ca + e Z V k_ - 2 e II k i ] - 0 (3.7)

Ca k i + e V2 2 _ e _ v 2 2- kr k r + e II (k2r - ki) -- 0 (3.8)

Equations (3.7) and (3.8) provide the solutions to the direct

problem, viz. computing the properties of the kinematic waves of

wave number kr when C_, 8, _ and R are known. There are two

solutions corresponding to two modes (noted with the subscripts 3

and 4). In the experiments it was found that modes 3 and 4 are

respectively predominant at low void fractions (0 < _ < 0.25) and

at "large" void fractions (_ > 0.30)

In particular for kr = 0, the two solutions are •

k i e (Ca - C3) (C_ - C4)

k i = 0 with -- = , V = Ca (3.9)

k_ Ca

and

C_ I i I I
t

ki - e H r V = Ca with , _ + (3.10)
Ca C3 C4 Ca

C3 and C4 being defined by :

Z _ C3 + C4 II _ C3 C4 (3.11)

For k r _ _, the two solutions are :

C_ - C3

V = C3 k i = - (3.12)
e c3 (c4 - c3)

C4 - C_

V = C4 k i = - (3.13)
e c4 (c4 - c3)
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In equations (3.7) and (3.8) the three quantities @ kr, k i are

present only through the two products (@ k r) and (@ ki). In actual

experimental runs, k r is never zero and the equations may be

written '

V - C_ + (C 3 + C 4) V (B k i) - 2 C 3 C 4 (Q k i) = 0 (3.14)

- C_

@ k i (@ ki )z

(@ k r)2 + V2 - (C3 + C4 ) %' + C3 C4 - C3 C4 (B k r)2

- 0 (3.15)

Since in the exploitable

significantly depend on k r

convenient to eliminate V

(3.14) yields :

experimental data, V does not

(no r significant dispersion), it is

between eqs. (3.14) and (3.15). Eq.

V --

C_ + 2 C3C 4 (B k i)

I + (C 3 + C 4) (8 k i)

(3.16)

and eq. (3.15) yields :

V --

C3 + C 4 J(C 4 - C3 )2 @ k i (e k i)2

__ _ + C_ )2 + C3 C42 4 (@ k r (8 k r )2

(3.17)

The solutions for @ k i are then the real solutions of the

equation

2 C_- (C 3 + C 4) - (C 4 - C3)2 (B k i)

i + (C 3 + C 4) @ k i

J @ ki (@ ki )2
+ (C 4 _ C3)2 + 4 Cc_ + 4 C 3 C4

(8 k r )Z (e k r )2

(3.18)

Computing directly @ k i as a function of @ k r from eq. (3.18) is

not straightforward. It is more convenient to transform eq. (3.18)

to express e k r as a function of 8 k_
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2
(e k r )

D k_

[C_ + C3 C4 @ ki] [i + (C 3 + C 4) @ k i ]2

(Co- C3 ) (Co- C4 ) - (C 4- C3)28 k i [Ccx+ C3C 4 0 ki]

(3.19)

For a given value of ki, eq. (3.19) yields zero or one real

positive value of k r.

IV. IDENTIFICATION OF THE VOID-DRIFT CLOSURE EQUATION FROM

KINEMATIC WAVE PROPERTIES ("Inverse problem")

The problem posed in this paper is the determination of C_, 0, Z

and _, using the experimental data on kinematic waves. It is the

inverse of the problem of section 3.

The principle of the method is to write eqs. (3.7) and (3.8), for

instance, for several sets of experimental conditions for which

kr, V and k i are known and to use the resulting equations to

compute C_, 8, Z and R.

In the exploitable data, as already noted, V does not depend

significantly on k r . Accordingly, when a single mode is

predominant, V may be expected to be close to both C 3 (or C 4) and

C_ (or C_). This has two consequences :

i. Whenever a single mode is predominant, the experimental

correlation for V should be a correlation for C_ as well. This is

corroborated by the fact that is satisfies the definition (3.3).

In the experimental conditions of Tournaire (1987) (upward

vertical flow, low pressure), it leads to (Bourn, 1988a, f and

C_ - W in m/s) :

For 0 < _ < 0.2 (mode 3 predominant)

f = 0.22 _ (I - =) [i - 1.25 _ (i - _)]

J
C_ - W = 0.22 (I - 2_) [I - 2.5 _ (I - _)]

(4.1)
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For 0.3 < _ < 0.41 (mode 4 predominant)

f = 0.22 _ - 0.028_

fC_ -W= 0.22

(4.2)

For 0.2 < _ < 0.3 (the two modes coexist) the values of f and

C_ - W may be interpolated between (4.1) and (4.2) with, from the

experimental data •

for _ : 0.25

C_ - W -_ 0.08 (4.3)

2. When mode 3 (respectively mode 4) is predominant, C_ - C3

(respectively C4 - C_) should be "small"

C_ being known and V eliminated, the problem may now be

reformulated, eqs. (3.7) and (3.8) being replaced by eq. (3.18) or

(3.19) to be solved for e, C3, C4. Only mode 3 results are

exploitable since mode 4 results for k i are too few in number. In

view of the forms of eqs. (3.18) and (3.19), the foregoing problem

is far from simple. This is confirmed by fig. i in which, as

suggested by eq. (3.19), the experimental results for - k_/k i are

plotted as a function of - ki, and which exhibits an important

scatter (in the representation of fig. i, the points corresponding

to Iki I < 0.i are subject to large errors and therefore

meaningless. They were not plotted in the figure).

In the domain in which mode 3 is predominant, the conditions :

#

C3 < C_ < C_ < C4 (4.4)

may be expected to hold (see Bour@, 1988a). They entail

C_ - C3 i C4 - Ca Ca
< < <

8 c3 (c4 - c3) 8 (C] + C4) 0 C4 (C4 - C3) e c3 c4
(4.5)
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Then,

starts

which

kr2/ki

as k i decreases from zero, k_/k i resulting from eq. (3.19)

from the value corresponding to eq. (3.9) with a slope

may be of either sign. However, when Iki I is sufficient,

also decreases. It tends towards - _ for the value

corresponding to eq. (3.12). For the values of k i comprised

between those given by eqs. (3.12) and (3.13), there is no

physical solution (k2r _< 0). Finally, for the values of k i

comprised between those given by eqs. (3.13) and (3.10), there is

a solution again corresponding to mode 4.

By trial and error, 8, C 3 and C 4 may be adjusted to fit the curve

representing eq. (3.19) to mode 3 data. In view of the absence of

dispersion C 3 may be expected to be close to C a.

For 0 < _ _ 0.20 : the following set of values is acceptable

8=0.25 s 1Ca C3 = 0.02 m/s

C4 Ca = 0 08 m/sJ

(4.6)

Precise adjustement would need more accurate data for the wave

velocities and especially for the damping/amplification

coefficients. Such data does not exist and cannot be expected to

be obtained soon in view of the available instrumentation. For

> 0.25, no sufficiently accurate data is available.

Equations (4.1) and (4.6) confirm that, even at low pressure, the

relevant velocity differences corresponding to fully developed

conditions are fairly small in bubbly flows. They are negligible

as soon as W is large enough (say 3 m/s). Accordingly the

correlations for Ca - W, C 3 - W, C 4 - W are probably not crucial.

On the other hand, the drift relaxation time 8 is an essential

parameter of the generalized drift flux model.
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V. CONCLUSIONS

After a reminder on the main characteristics and the potential

advantages of generalized drift flux models, the problem of the

identification of the differential void-drift closure law they

imply has been addressed.

Two advantages of generalized drift flux models versus complete

two-fluid models are :

i. The correct description of the kinematic wave phenomena and the

straightforward control and interpretation of the mathematical

nature (hyperbolic or not) of the model set of partial

differential equations that they enable.

2. The simplification of the closure problem, involving only

closure laws of simple physical significance and easy to assess.

On the other hand, it has been found that the available data on

kinematic wave properties is not quite adequate to enable the

identification of the void-drift closure law. Such an

identification would need a very good accuracy (difficult to reach

in practice) on the wave damping or amplification coefficients.

Accordingly kinematic wave properties seem to be more useful as a

closure validity test than as a source of quantitative information

on the closure laws.

However, a void-drift closure, suitable for bubbly flows, has been

adjusted on the available kinematic wave data. It involves several

velocities which differ only slightly from each other and from the

average fluid velocity but whichare necessary to the description

of the kinematic wave properties. It also involves a drift

relaxation time which is an essential parameter of generalized

drift flux models and which was tentatively found to be of the

order of 0.25 s for the upward flow of air-water mixtures at low

pressure.
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Table '1

Simplified comparison of modeling strategies

D_ift flux approach Common features Two-fluid approach

I Void-drift closure eq.

(partial differential eq.)

÷

Closure laws :

fully.developed drift f

Drift relaxation time e

Kinematic wave

properties (C 3, C4)

Dynamic wave prop. (r1)

Balance equations •

I Mixture momentum

2 Phasic mass

2 Phasic energy

÷

Closure laws :

Bulk terms

Wall: Momentum, (Mass],

Energy transfers

Interface • Mass and

Energy transfers

t
Generalized drift flux models

(PLG not calculated) il

Pressure difference eq.

(Balance eq.)

÷

Closure laws •

Bulk terms

Wall terms (frictlonJ

Interfaclal terms, incl.

friction & Induced inertia

Problem : Stiff equation

J Assumption on PLG J

Optionally

I Pressure difference eq. J+ Closure laws (as above)

I

Complete two-fluid models JJ
(PLG calculated) Jl II Current two-fluid models(PLG assumed)
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